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An example

Theorem (Mantel, 1907)

The maximum number of edges in a graph on n vertices with no triangles
is bn2

4 c. In particular, as n→∞, the maximum edge density goes to 1
2 .

The maximum is attained on Kd n
2
e,b n

2
c:

dn2e · b
n
2c edges out of

(n
2

)
potential edges, no triangles.
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Other triangle densities

What if I want to know the maximum edge density in a graph on n
vertices with a triangle density of y, for some 0 ≤ y ≤ 1?

Example

Let G = ,

then (d( ,G ), d( ,G )) =
(

9

(7
2)
, 2

(7
3)

)
≈ (0.43, 0.06).

Is that the max edge density among graphs on 7 vertices with 2 triangles?

What can (d( ,G ), d( ,G )) be if G is any graph on 7 vertices?
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All density vectors for graphs on 7 vertices

(d( ,G ), d( ,G )) for any graph G on 7 vertices
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All density vectors for graphs on n vertices as n→∞

(d( ,G ), d( ,G )) for any graph G on n vertices as n→∞

(Razborov, 2008)
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Why care?
Large graphs are everywhere!

Biology

Facebook graph
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More reasons to care!

Google Maps

Alfred Pasieka/Science Photo Library/Getty Images
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Problem

Those graphs are sometimes too large for computers!

Idea: understand the graph locally

This raises immediately two questions:

1 How do global and local properties relate?

2 What is even possible locally?
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Graph density inequalities

− ≥ 0, −4
3 + + 2

3 ≥ 0, . . .

Nonnegative polynomial graph inequality: a polynomial∗ involving any
graph densities (not just edges and triangles, and not necessarily just two
of them) that, when evaluated on any graph on n vertices where n→∞,
is nonnegative. How can one certify such an inequality?
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Certifying polynomial inequalities

A polynomial p ∈ R[x1, . . . , xn] =: R[x]
is nonnegative if p(x1, . . . , xn) ≥ 0 for all (x1, . . . , xn) ∈ Rn

p sum of squares (sos), i.e., p =
∑l

i=1 f
2
i where fi ∈ R[x] ⇒ p ≥ 0

Hilbert (1888): Not all nonnegative polynomials are sos.

Artin (1927): Every nonnegative polynomial can be written as a sum of
squares of rational functions.

Motzkin (1967, with Taussky-Todd): M(x , y) = x4y2 + x2y4 + 1− 3x2y2

is a nonnegative polynomial but is not a sos.
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How do sums of squares fare with graph densities?

Sums of squares of polynomials involving graph densities=graph sos

Hatami-Norine (2011): Not every nonnegative graph polynomial can be
written as a graph sos or even as a rational graph sos.

Lovász-Szegedy (2006) + Netzer-Thom (2015): Every nonnegative graph
polynomial plus any ε > 0 can be written as a graph sos.

BRST (2018): − ≥ 0 is a nonnegative graph polynomial that
cannot be written as a graph sos.

How? We characterize exactly which homogeneous graph
polynomials of degree three can be written as a graph sos.
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Tools to work on such problems

Graphs on n vertices ←→ subsets of {0, 1}(
n
2)

1

2

3 4
←→ 12 13 14 23 24 34

( 1, 1, 1, 0, 0, 0 )

Variables xij → transform polynomials into pictures!

x12 = 1

2
and x12x13x23 = 1

2 3

x12(G ) = 1

2
(G ) gives 1 if {1, 2} ∈ E (G ), and 0 otherwise

x12x13x23(G ) = 1
2 3

(G ) gives 1 if the vertices 1,2, and 3 form a

triangle in G , and 0 otherwise
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Symmetrization

Example (Definition by example)

Let = symn( 1
2 3

) = 1
n!

∑
σ∈Sn σ( 1

2 3
).

(G ) returns the triangle density of G .

Example (Crucial definition by example: using only a subgroup of Sn)

Let 1 = symσ∈Sn:σ fixes 1( 1

2
) = 1

n−1

∑
j≥2 x1j

1 (G ) returns the relative degree of vertex 1 in G .

Example (One more example to clarify)

1
2

(
1

3

4 2

5

6

)
= 2

4
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Miracle 1: (asymptotic) multiplication

1 1 =
1

(n − 1)2

∑
j≥2

x1j

2

=
1

(n − 1)2

∑
j≥2

x2
1j +

2

(n − 1)2

∑
2≤i<j

x1ix1j

=
1

(n − 1)2

∑
j≥2

x1j +
2

(n − 1)2

∑
2≤i<j

x1ix1j

≈ 1

Multiplying asymptotically = gluing!

Example

3
1 2

· 1
2

=
2

3 1 ·
2
1 =

2
3 1
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Certifying a nonnegative graph polynomial with a sos

Show that − ≥ 0.

1

2
symn

(
( 1 − 2 )2

)
=

1

2
symn( 1 1 − 2 1 2 + 2 2 )

=
1

2
symn( 1 − 2 1 2 + 2 )

=
1

2
(2 − 2 )
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Miracle 2: homogeneous hegemony

Theorem (BRST 2018)

Consider a homogeneous nonnegative graph polynomial p of degree d that
can be written as a graph sos.

Then p can be written out as a graph sos where any two monomials in any
given square multiply to have degree d.

Example

symn

 1

2

3 4
− 1 2


2

+2symn

 1

2 3

4 5
+ (
√

2−1)
1

2

3

4

5
6


2

= − 2 + + 2 + 2

= + + 2 = symn( 1
2

+ 1 2 )2
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= + + 2 = symn( 1
2

+ 1 2 )2
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All graph sums of squares of degree 3

Theorem (BRST 2018)

Any homogeneous graph sos of degree 3 can be written as

symn

(
a1( 1

2
+ 2

1
) + a2

1

2

)2

+symn

(
a3( 1

2
− 2

1
)

)2

+symn

(
a4(

1

2
3 − 1

2
4 )

)2

+symn

(
a5

1
2 3

)2

+symn

a6 1

2

3 4

2

+symn

(
a7

1

2 3

4

)2

+symn

(
a8

1
2 3

4

5

)2

+symn

(
a9

1

2

3

4

5

6

)2

where

a1, . . . , a9 ∈ R.

Equivalently, it can be written as

a +(b+4m2 + f ) +(2m1 + c+g) +(2m1 +d−g) +(m3 + e− f )

where a, b, c, d , e, f , g ≥ 0 and

(
m1 m2

m2 m3

)
� 0.
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Corollary (BRST 2018)

a − ≥ 0 is not a sum of squares for any a ∈ R.
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Thank you!
Also follow forall on instagram

or check out www.instagram.com/_forall.
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3-profiles of graphs

BRST(2018):
(d( ,G ), d( ,G ), d( ,G ), d( ,G )) is contained in

B = {x ∈ R4 : x0 + x1 + x2 + x3 = 1,

x0, x1, x2, x3 ≥ 0(
3x0 + x1 x1 + x2

x1 + x2 x2 + 3x3

)
� 0}

which looks like...
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Convex relaxation for 3-profiles of graphs
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Actual 3-profiles of graphs
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Actual 3-profiles of graphs
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